Applied Electronics

Instructor:

Dr. Ahmad El-Banna

DAY#5 SUMMER 2016

Agenda

Active Filters

- Basic Filter Responses
- Active LPF, HPF, BPF & BSF
- Filter Response Measurements

Oscillators

- Sinusoidal Oscillators
- Non-Sinusoidal Oscillators

Troubleshooting

Practical Applications

)anna

© Ahmad E

BASIC FILTER RESPONSES

Summer 2016

Intro.

- Filters are circuits that are capable of **passing** signals with certain selected **frequencies** while **rejecting** signals with **other** frequencies.
- This property is called **selectivity**.
- Active filters use transistors or op-amps combined with passive RC, RL, or RLC circuits.
- The **passband** of a filter is the range of frequencies that are allowed to pass through the filter with **minimum attenuation** (usually defined as less than of attenuation).
- The critical frequency, (also called the cutoff frequency) defines the end of the passband and is normally specified at the point where the response drops (70.7%) from the passband response.
- Following the passband is a region called the **transition region** that leads into a region called the **stopband**.
- There is **no precise point** between the transition region and the stopband.

Summer 2016

Applied Electronics

5

2016

Basic Filter Responses

Low-Pass Filter Response

- Actual filter responses depend on the **number of poles**, a term used with filters ٠ to describe the **number of RC circuits** contained in the filter.
- The -20 dB/decade roll-off rate for the gain of a basic RC filter means that at a ٠ frequency of $10 f_c$, the output will be -20dB (10%) of the input.
- This roll-off rate is **not a good filter characteristic** because too much of the unwanted frequencies (beyond the passband) are allowed through the filter.

(a) Comparison of an ideal low-pass filter response (blue area) with actual response. Although not shown on log scale, response extends down to $f_r = 0$.

(b) Basic low-pass circuit

Basic Filter Responses..

• High-Pass Filter Response

(a) Comparison of an ideal high-pass filter response (blue area) with actual response

© Ahmad El-Banna

Summer 2016

Basic Filter Responses...

- The **quality factor** (Q) of a band-pass filter is the ratio of the center frequency to the bandwidth.
- The higher the value of Q, the narrower the bandwidth and the better the selectivity for a given value of f₀.
- Band-pass filters are sometimes classified as narrow-band (Q>10) or wide-band (Q<10).
- The quality factor (Q) can also be expressed in terms of the damping factor (DF) of the filter

Summer

2016

© Ahmad El-Banna

Basic Filter Responses....

• Band-Stop Filter Response

also known as notch, band-reject, or band-elimination filter.

Summer 2016

Summer 2016

FILTER RESPONSE CHARACTERISTICS

FILTER RESPONSE CHARACTERISTICS

- Each type of filter response (lowpass, high-pass, band-pass, or bandstop) can be tailored by *circuit component values* to have either a
 - Butterworth,
 - Chebyshev, or
 - Bessel characteristic.
- Each of these characteristics is identified by the shape of the response curve, and each has an advantage in certain applications.

Butterworth Bessel Chebyshev

The Butterworth Characteristic

- The Butterworth characteristic provides a very flat amplitude response in the passband and a roll-off rate of -20 dB/decade/pole.
- The phase response is not linear, and the phase shift (thus, time delay) of signals
 passing through the filter varies nonlinearly with frequency.
- Therefore, a pulse applied to a Butterworth filter will cause overshoots on the output because each frequency component of the pulse's rising and falling edges experiences a different time delay.

© Ahmad El-Banna

Summer

FILTER RESPONSE CHARACTERISTICS..

The Chebyshev Characteristic

- Filters with the Chebyshev response characteristic are useful when a rapid roll-off is required because it provides a roll-off rate greater than -20 dB/decade/pole.
- This is a greater rate than that of the Butterworth, so filters can be implemented with the Chebyshev response with fewer poles and less complex circuitry for a given roll-off rate.
- This type of filter response is characterized by overshoot or ripples in the passband (depending on the number of poles) and an even less linear phase response than the Butterworth.

The Bessel Characteristic

- The Bessel response exhibits a **linear phase characteristic**, meaning that the phase shift increases linearly with frequency.
- The result is almost **no overshoot on the output** with a pulse input.
- It has the **slowest roll-off** rate.

The Damping Factor

- The damping factor (**DF**) of an active filter circuit determines which ٠ response characteristic the filter exhibits.
- It affects the filter response by **negative feedback action**. ٠
- Any attempted increase or decrease in the output voltage is offset by the opposing effect of the negative feedback.
- This **tends to** make the **response** curve **flat** in the passband of the filter if ٠ the value for the damping factor is precisely set.

$$DF = 2 - \frac{R_1}{R_2}$$

- The value of the damping factor • required to produce a desired response characteristic depends on the order (number of poles) of the filter.
- **Example:** 2^{nd} order \rightarrow DF=1.4

$$\frac{R_1}{R_2} = 2 - DF = 2 - 1.414 = 0.586$$

Values for the Butterworth response

		1ST STAGE			2ND STAGE			3RD STAGE		
ORDER	ROLL-OFF DB/DECADE	POLES	DF	R_{1}/R_{2}	POLES	DF	R_3/R_4	POLES	DF	R_5/R_6
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

Summer 2016

13

Critical Frequency and Roll-Off Rate

•

Summer 2016

ACTIVE LOW-PASS FILTERS

Summer 2016

Advantages of Op-Amp Active Filters

- Filters that use op-amps as the active element provide several advantages over passive filters (R, L, and C elements only).
 - The op-amp provides **gain**, so the **signal is not attenuated** as it passes through the filter.
 - The high input impedance of the op-amp **prevents excessive loading of the driving source**.
 - The low output impedance of the op-amp prevents the filter from being affected by the load that it is driving.
 - Active filters are also **easy to adjust over a wide frequency range** without altering the desired response.

The Sallen-Key LPF (2nd Order)

It is used to provide very high Q factor and passband gain without the use of inductors.

One pole

R

 $V_{in} o$

 $f_c = \frac{1}{2\pi RC}$

 $A_{cl(\text{NI})} = \frac{R_1}{T}$

It is also known as a VCVS (voltagecontrolled voltage source) filter.

$$f_c = \frac{1}{2\pi\sqrt{R_A R_B C_A C_B}}$$

Two-pole low-pass circuit

 f_c

 $10f_c$

Cascaded LPF

 A three-pole filter is required to get a third-order low-pass response.

(a) Third-order configuration

• A four-pole filter is preferred because it uses the same number of op-amps to achieve a faster roll-off.

(b) Fourth-order configuration

Summer 2016

Applied Electronics

In high-pass filters, the roles of the capacitor and resistor are reversed in the RC circuits.

ACTIVE HIGH-PASS FILTERS

Summer 2016

© Ahmad El-Banna

Applied Electronics

20

Summer 2016

Single Pole HPF

Sallen-Key HPF

Cascaded HPF

Order = ? roll-off = ?

> Summer 2016

21

© Ahmad El-Banna

ACTIVE BAND-PASS FILTERS

Summer 2016

Cascaded Low-Pass and High-Pass Filters

23

Summer

Multiple-Feedback Band-Pass Filter

• The center frequency expression is:

$$f_0 = \frac{1}{2\pi C} \sqrt{\frac{R_1 + R_3}{R_1 R_2 R_3}}$$

 A value for the capacitors is chosen and then the three resistor values are calculated using the expressions:

$$R_1 = \frac{Q}{2\pi f_0 C A_0}$$

$$R_2 = \frac{Q}{\pi f_0 C}$$

$$R_3 = \frac{Q}{2\pi f_0 C (2Q^2 - A_0)}$$

The gain expression

$$A_0 = \frac{R_2}{2R_1}$$

State-Variable Filter (universal active filter)

- It consists of one or more integrators, connected in some feedback configuration.
- It realizes the *state-space model* with n state variables for an nth order system.
- The instantaneous output voltage of one of the integrators corresponds to one of the state-space model's state variables.
- The **center frequency** is set by the **RC** circuits in both **integrators**.

State-Variable Filter.

- At <u>f < f</u>, the input signal passes through the summing amplifier and integrators and is **fed back 180**° out of phase. Thus, the feedback signal and **input signal** cancel for all frequencies < fc.
- As the **low-pass response of the integrators rolls off**, the feedback signal diminishes, thus **allowing the input to pass** through to the band-pass output.
- <u>Above f_c</u>, the low-pass response disappears, thus preventing the input signal from passing through the integrators.
- As a **result**, the band-pass filter output **peaks sharply at f**_c.

Summer 2016

State-Variable Filter...

• Stable **Qs** up to 100 can be obtained with this type of filter.

- The state-variable filter cannot be optimized for low-pass, high-pass, and narrow band-pass performance simultaneously.
- To optimize for a low-pass or a high-pass Butterworth response, DF must equal 1.414. Since Q = 1/DF, a Q of 0.707 will result.
- Such a low Q provides a very wide band-pass response (large BW and poor selectivity).
- For optimization as a narrow band-pass filter, the Q must be set high.

Summer 2016

Biquad Filter

"Biquad" is an abbreviation of "**biquadratic**", which refers to the fact that in the Z domain, its **transfer function** is the ratio of two quadratic functions.

٠

State-Variable Filter	Biquad Filter				
Sum. Amp. \rightarrow Integrator \rightarrow Integrator	Integrator \rightarrow Inv. Amp. \rightarrow Integrator				
very high Q value	very high Q value				
B.W. depends on f _c	B.W. independent on f _c				
Q independent on f _c	Q depends on f _c				
HP, BP & LP outputs	BP & LP outputs				

28

ACTIVE BAND-STOP FILTERS

Summer 2016

29

)anna

© Ahmad E

Multiple-Feedback Band-Stop Filter

State-Variable Band-Stop Filter

Summer 2016

Summer 2016

Discrete Point Measurement

The general procedure is as follows:

- 1. Set the amplitude of the sine wave generator to a desired voltage level.
- 2. **Set the frequency** of the sine wave generator to a value well below the expected critical frequency of the filter under test.
 - For a low-pass filter, set the frequency as near as possible to 0 Hz.
 - For a **band-pass** filter, set the frequency well **below the expected lower** critical frequency.
- 3. **Increase the frequency** in predetermined **steps** sufficient to allow enough data points for an accurate response curve.
- 4. Maintain a constant input voltage amplitude while varying the frequency.
- 5. **Record** the **output voltage** at each value of frequency.

6. After recording a sufficient number of points, **plot a graph** of output voltage versus frequency.

Applied Electronics

Summer 2016

Swept Frequency Measuremei

- requires more elaborate test equipment
- but it is much more efficient

(b) Test setup for a filter response using an oscilloscope. The scope is placed in X-Y mode. The sawtooth waveform from the sweep generator drives the X-channel of the oscilloscope.

Summer 2016

Applied Electronics

Introduction

- An **oscillator** is a circuit that produces a periodic waveform on its output with only the dc supply voltage as an input.
- The output voltage can be either **sinusoidal** or **non sinusoidal**, depending on the type of oscillator.
- Two major classifications for oscillators are **feedback** oscillators and **relaxation** oscillators.
- an oscillator converts electrical energy from the dc power supply to periodic waveforms.

FEEDBACK OSCILLATORS

Summer 2016

Positive feedback is characterized by • the condition wherein a portion of the output voltage of an amplifier is fed back to the input with no net phase shift, resulting in a reinforcement of the output signal.

Oscillator Basic elements of a feedback oscillator.

Conditions for Oscillation

- Two conditions:
- 1. The phase shift around the feedback loop must be effectively 0°.
- 2. The voltage gain, A_{cl} around the closed feedback loop (loop gain) must equal 1 (unity).

 $A_{cl} = A_v B$

38

Start-Up Conditions

- For oscillation to begin, the voltage gain around the positive feedback loop must ٠ be greater than 1 so that the amplitude of the output can build up to a desired level.
- The gain must then decrease to 1 so that the output stays at the desired level and oscillation is sustained.
- Initially, a small positive feedback voltage develops from thermally produced ٠ broad-band noise in the resistors or other components or from power supply turnon transients.

Summer 2016

40

Summer 2016

Wien-bridge oscillator Phase-shift oscillator Twin-T oscillator

OSCILLATORS WITH RC FEEDBACK CIRCUITS

Applied Electronics

Summer

2016

The Wien-Bridge Oscillator

- Generally, RC feedback oscillators are used for frequencies up to about 1 MHz.
- The Wien-bridge is by far the most widely used type of RC feedback oscillator for this range of frequencies.

▲ FIGURE 16-7

The Wien-bridge oscillator schematic drawn in two different but equivalent ways.

© Ahmad El-Banna

Applied Electronics

The Wien-Bridge Oscillator.

Positive Feedback Conditions for Oscillation

 $A_{cl} = 3 \longrightarrow A_{cl} = 1 + (R_1/R_2)$ choose $R_1 = 2R_2$

$$A_{cl} = \frac{R_1 + R_2}{R_2} = \frac{2R_2 + R_2}{R_2} = \frac{3R_2}{R_2} = 3$$

• Start-Up Conditions

(a) Loop gain greater than 1 causes output to build up.

(b) Loop gain of 1 causes a sustained constant output.

Summer 2016

Self-starting Wien-bridge oscillator

Using a form of automatic gain control (AGC)

1- When dc power is first applied, both zener diodes appear as opens.

 $A_{cl} = \frac{R_1 + R_2 + R_3}{R_2} = \frac{3R_2 + R_3}{R_2} = 3 + \frac{R_3}{R_2}$

- 2- When the zeners conduct, they short out $\rm R_3$ and $\rm A_{cl}$ = 3
- The zener feedback is simple, it suffers from the nonlinearity of the zener diodes that occurs in order to control gain.

FIGURE 16-11

Self-starting Wien-bridge oscillator using a JFET in the negative feedback loop.

- In some older designs, a tungsten lamp was used in the feed-back circuit to achieve stability.
- A better method to control the gain uses a JFET as a voltage-controlled resistor in a negative feedback path.
- As the voltage increases, the drain-source resistance increases.

FIGURE 16–10

Self-starting Wien-bridge oscillator using back-to-back zener diodes.

the Applied Electronics

The Phase-Shift Oscillator

- Each of the three RC circuits in the feedback loop can provide a maximum phase shift approaching 90°.
- Oscillation occurs at the frequency where the total phase shift through the three RC circuits is 180°.
- The inversion of the op-amp itself provides the additional 180° to meet the requirement for oscillation of a 360° (or 0°) phase shift around the feedback loop.

$$B = \frac{1}{29}$$
 where $B = R_3/R_{f}$.

$$R_1 = R_2 = R_3 = R$$
 and $C_1 = C_2 = C_3 = C$.
 $f_r = \frac{1}{2\pi\sqrt{6RC}}$

Summer 2016

44

Applied Electronics

45

Twin-T Oscillator

- One of the twin-T filters has a low-pass response, and the other has a high-pass ٠ response.
- The combined parallel filters produce a band-stop or notch response with a ٠ center frequency equal to the desired frequency of oscillation.

Twin-T oscillator and twin-T filter response.

Summer 2016

Colpitts Oscillator

- LC feedback elements are normally used in oscillators that require higher frequencies of oscillation.
- Also, because of the frequency limitation (lower unity-gain frequency) of most opamps, discrete transistors (BJT or FET) are often used as the gain element in LC oscillators.
- Colpitts oscillator uses an LC circuit in the feedback loop to provide the necessary phase shift and to act as a resonant filter that passes only the desired frequency of oscillation.

$$f_r \cong \frac{1}{2\pi\sqrt{LC_{\rm T}}}$$

$$C_{\rm T} = \frac{C_1 C_2}{C_1 + C_2}$$

The attenuation of the tank circuit is the output of the tank (V_f) divided by the input to the tank (V_{out}) . B = $V_f/V_{out} = C_2/C_1$. For $A_v B > 1$, A_v must be greater than C_1/C_2 .

FIGURE 16–17

Conditions for Oscillation and Start-Up

$$B = \frac{V_f}{V_{out}} \cong \frac{IX_{C1}}{IX_{C2}} = \frac{X_{C1}}{X_{C2}} = \frac{1/(2\pi f_r C_1)}{1/(2\pi f_r C_2)}$$

$$B = \frac{C_2}{C_1} \qquad A_v = \frac{C_1}{C_2}$$

Loading of the Feedback Circuit Affects the Frequency of Oscillation

 \rightarrow Z_{in} of the amplifier loads the feed-back circuit and lowers its Q, thus lowering the resonant frequency.

 C_{γ}

(a) A load capacitively coupled to oscillator output can reduce circuit Q and f_r .

▲ FIGURE 16-20

Out

 C_1

Oscillator loading.

(b) Transformer coupling of load can reduce loading effect by impedance transformation.

> Summer 2016

48

Clapp Oscillator

 The Clapp oscillator is a variation of the Colpitts with addition of C₃.

$$C_{\rm T} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}}$$

(Q > 10) $\longrightarrow f_r \approx \frac{1}{2\pi\sqrt{LC_{\rm T}}}$

$$(f_r \cong 1/(2\pi\sqrt{LC_3})).$$

- Since C₁ and C₂ are both connected to ground at one end, the junction capacitance of the transistor and other stray capacitances appear in parallel with C₁ and C₂ to ground, altering their effective values.
- C₃ is not affected, however, and thus provides a more accurate and stable frequency of oscillation.

Summer 2016

Hartley Oscillator

• The Hartley oscillator is similar to the Colpitts except that the feedback circuit consists of two series inductors and a parallel capacitor

$$Q > 10 \qquad f_r \cong \frac{1}{2\pi\sqrt{L_{\rm T}C}}$$
$$L_{\rm T} = L_1 + L_2.$$
$$B \cong \frac{L_1}{L_2}$$
$$A_v \cong \frac{L_2}{L_1}$$

 Loading of the tank circuit has the same effect in the Hartley as in the Colpitts; that is, the Q is decreased and thus f_r decreases.

> Summer 2016

50

Armstrong Oscillator

- This type of LC feedback oscillator uses transformer coupling to feed back a portion of the signal voltage.
- It is sometimes called a "tickler" oscillator in reference to the transformer secondary or "tickler coil" that provides the feedback to keep the oscillation going.
- The Armstrong is less common than the Colpitts, Clapp, and Hartley, mainly • because of the disadvantage of transformer size and cost.

Applied Electronics

Crystal-Controlled Oscillators

- The most stable and accurate type of feedback oscillator uses a **piezoelectric crystal** in the feedback loop to control the frequency.
- Quartz is one type of crystalline substance found in nature that exhibits a property called the piezoelectric effect.
- When a changing mechanical stress is applied across the crystal to cause it to vibrate, a voltage develops at the frequency of mechanical vibration.
- Conversely, when an ac voltage is applied across the crystal, it vibrates at the frequency of the applied voltage.
- The greatest vibration occurs at the crystal's natural resonant frequency, which is determined by the physical dimensions and by the way the crystal is cut.

Applied Electronics

Basic crystal oscillators

- A great advantage of the crystal is that it exhibits a very high Q.
- The impedance of the crystal is minimum at the series resonant frequency, thus providing maximum feedback.
- a crystal is used as a series resonant tank circuit.
- The crystal tuning capacitor, C_c is used to "fine tune" the oscillator frequency by "pulling" the resonant frequency of the crystal slightly up or down.

Modes:

- Piezoelectric crystals can oscillate in either of two modes—fundamental or overtone.
- The **fundamental** frequency of a crystal is the lowest frequency at which it is naturally resonant.
- The fundamental frequency depends on the crystal's mechanical dimensions, type of cut, .. etc.
- Usually it's less than 20 MHz.
- **Overtones** are approximate integer multiples of the fundamental frequency.
- Many crystal oscillators are available in integrated circuit packages.

 Relaxation oscillators use an RC timing circuit and a device typically a Schmitt trigger or other device that changes states to alternately charge and discharge a capacitor through a resistor to generate a periodic waveform.

RELAXATION OSCILLATORS

Triangular-Wave Oscillator

• Basic triangular-wave oscillator

 Practical Triangular-Wave Oscillator

Applied Electronics

55

Summer

Sawtooth Voltage-Controlled Oscillator (VCO)

- VCO is a relaxation oscillator whose frequency can be changed by a variable dc control voltage.
- VCOs can be either sinusoidal or nonsinusoidal.
- One way to build a sawtooth VCO is with an op-amp integrator that uses a switching device (PUT) in parallel with the feedback capacitor to terminate each ramp at a prescribed level and effectively "reset" the circuit.
- The PUT is a programmable unijunction transistor with an anode, a cathode, and a gate terminal.

(a) Initially, the capacitor charges, the output ramp begins, and the PUT is off. <u>N.B.</u> For more details regarding PUT, refer to ch. 11 56

Summer

2016

Sawtooth VCO..

(b) The capacitor rapidly discharges when the PUT momentarily turns on.

T, of the sawtooth waveform:

$$T = \frac{V_p - V_F}{|V_{\rm IN}|/R_i C}$$

$$f = 1/T$$
, gives $f = \frac{|V_{\rm IN}|}{R_i C} \left(\frac{1}{V_p - V_{\rm F}}\right)$

Summer 2016

Square-wave Relaxation oscillator

- the op-amp's inverting input is the capacitor voltage and
- the noninverting input is a portion of the output fed back through resistors R₂, R₃ to provide hysteresis.

58

The 555 Timer as an Oscillator

Astable Operation

© Ahmad El-Banna

Applied Electronics

59

Summer

555 Timer Oscillator ..

© Ahmad El-Banna

Applied Electronics

Summer 2016

© Ahmad El-Banna

Applied Electronics

61

Summer

2016

 $+V_{\rm CC}$

(8)

 $V_{\rm CC}$

(4)

RESET

DISCH

 $\leq R_1$

 $\leq R_2$

(7)

555 as VCO

a variable control • voltage is applied to the CONT input (pin 5)

VCONT

V_{Cest}

 $\frac{1}{2}V_{\text{CONT}}$

VOUT

EXAMPLES OF SIMPLE FUNCTION GENERATORS

Summer 2016

Waveform Generator, Discrete Circuit

Waveform Generator IC

Summer

2016

PRACTICAL APPLICATIONS

Summer 2016

RFID System

66

RFID System.

Summer 2016

67

ASK Test Generator

68

ASK Test Generator.

© Ahmad El-Banna

Applied Electronics

69

References

- Floyd, chapters: 15,16
- Boylestad, chapters: 11,14
- For enquires:
 - ahmad.elbanna@feng.bu.edu.eg

70